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1. Abstract

The primary task of the vision sensor in a telerobotic system is to provide information about the
position of the system's effactor relative to objects of interest in its environment. The subtasks
required to perform the primary task include image segmentation, object recognition, and object
location and orientation in some coordinate system. The accompliishment of the vision task requires
the appropriate processing tools and the system methodology to effectively apply the tools to the
subtasks. This paper_describes-the functional structure of the telerobotic visfon system used in the
Langley Research Center's .(LaRCY Intelligent Systems Research Laboratory (ISRL} and.discusses two
monovision techniques for accomplishing the vision subtasks. : . : :

2. Introduction

The telerobotic vision research objective is to adapt, develop, and evaluate noncontact sensing techniques
to recognize and determine the location of objects in 3-space. To meet the objective, five goals have been
established: (1) the techniques should be minimally complex in both hardware and software; (2) be generally
applicable to a wide range of tasks; {(3) require minimal or no alteration or premarking of the target objects;
(4) be capable of mimicking a human operator (i.e., be able to provide target location information in terms of
approach velocity as well as position}; and (5) function in human real time (4 Hz.). An assumption that is
allowed in order to minimize scene complexity s that the target objects are man made and a priorf knowledge
about them fs available to the vision system. This is a reasonable assumption considering the nature of
current and near future space operations.

3. System Conffguration

The vision system is a distributed process within the Telerobotic System Simulation (TRSS) [1]. The system
fs functionally configured as two concurrent processes: the vision executive and the vision processor
(fig. 1). -The executive fncludes the functions of command interpretation, vision subtask determination, data
base and modelling activities, local control activity, data conversion, and transfer of vision system status
information to higher telerobotic system levels. The executive functions are performed by two modules referred
to as the interpreter and the control interface. The interpreter directs the determination of target informa-
tion by the vision system and the control interface processes and transmits the result to the telerobot's
controller.

The interpreter's functions of command interpretation, subtask determination and sequencing, and data base
organization and manipulation are hierarchical in structure and, therefore, are natural candidates for
implementation as trees [2]. A tree {s a collection of elements called nodes along with relationships among
the nodes (e.g., parenthood, childhood, sequence, direction, precedence) that place a hierarchical structure on
the nodes. A node can represent any entity (e.g., parent, child, subtask, shape, command) that does not
violate the syntax or relational structure of the tree in which it exists (f.e. ft must not impede the
execution of the function). Trees can be subdivided into subtrees: A subtree consisting of shape nodes would
represent an object, and one made up of command nodes would represent an executfon imperative.

The vision interpreter is. implemented as an abstract data type that allows the creation, deletion, and
manipulation of trees of arbitrary size and functiun. The trees exist only at runtime and only when required
to execute the requested function, thus, minimizing use of memory. As an example, assume that an imperative is
received by the interpreter to locate a detected, but unrecognized object. The appropriate task tree is
generated along with the necessary subtask, command, and object recognition subtrees embedded correctly in the
task tree. The tree structure itself ensures the correct execution sequence. When the object is recognized,
the recognition subtree is replaced by the object's description subtree known a priori, the location subtask
subtree is generated, and the tree driven execution is performed again.

The control interface converts raw position data derived by the vision processor to a form compatible with
the telerobot's control protocol. The TRSS data structure that handles dynamic system Input/output is so
constructed as to allow all position information to be accessed in terms of a common generic structure,
generally referred to as an NSAP homogeneous matrix [31. The matrix:
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1s composed of an approach vector A describing the direction normal to the target plane, a sliding vector §
denoting a direction normal to the A vector within the target plane and describing the rotation of the target
plane about the A vector, the N vector which is the cross product of the S and A vectors, and the position
vector P denoting the x, y, and z translations separating the axis systems of the camera and the target. The
NSAP matrix contains all the {nformation necessary to denote the orientation and position of the target with
respect to the camera frame, and facilitates the various frame transformations that must occur in the tele-
robotic control process [4]-[5]. The angular parameters required for control can be extracted directly from
the matrix. The decoupled angles used for finely resolved rate situations can be determined with the help of
direction cosines as shown below: :

rot. abt. z = arctan{Ny/Sy)
rot. abt. y = arccos(Az/(1 - Ay**2)**0.5) (1)
rot. abt. x = arccos{Az/(1 - Ax**2)**0.5)

where checks for singularities and proper quadrants ‘are implied. For position control situations or general
system requirements, an NSAP to Euler transform has been implemented.

The vision processor performs the vision subtatk as required by the executive and determines and advises
the executive of the current status of visfon processing. The vision processor is functionally segmented into
Tow level, middle level, and high level processing. Low level processes include thresholding, gray level
histogram generatfon and manipulation, and edge detection. Hardware and software implementing low level
processes have generally been acquired from outside sources. Middle level processes include gray level based
recognition, simple shape recognition, and target location. High level processes involve complex object
recognition. Development and. implementation of high level and middle level vision processes are the subjects
of internal research. Two middle level processes that have been developed are discussed in this paper.

4. Monovision Methods

Two techniques that have application to the vision subtasks of segmentation, shape decomposition, recog-
nition, and 3-space location are briefly discussed. The techniques are designed to extract 3-space information
from: sin%ue two dimensional intensity image using prior knowledge and the principles of the perspective
transformation.

The first method is based on the elastic matching [6] approach to pattern recognftion and has application
to shape decomposition, object recognition, and object location. It is an adaption of the linear programming
technigue of goal programming to the nonlinear problem of elastic matching [7]. Conceptually, elastic matching
can be explained by envisioning a transparent reference image overlaying a goal image. The reference image is
then warped or distorted to conform to the goal image by locally matching corresponding regions in the two
images. The reference image is a flexible template that is modelied as a system of equation pairs where each
equation pafr represents a linear combination of patterns that a point in the reference image can describe in
moving to a point in the goal image (fig. 2). The amount of displacement that each pattern contributes to the
distortion is determined by identifying the values of the parameters Af and Bi assocfated with- each of the
distortion patterns. The parameter values are derived by minimizing the absolute differences between
corresponding reference and goal image points without violating the pattern constraints. This type of problem
fs easily modelled mathematically using the linear programming technique of goal programming [(8). The
computational procedure that most efficiently resolves the optimal values of the goal programming model's
parameters {s the Simplex Algorithm.

The technique has been used to recognize simple three-dimensfonal objects of minimum curvature (i.e., near
planar) and determine their location in 3-space. A single prototype shape {e.g., a rectangle) can be used to
identify any of a primitive set of simple shapes by distorting it to match the image of an unknown shape. A
simple shape s here defined to be a convex geometric figure formed on the surface of a sphere of large radius
and the primitive set consists of rectangles, triangles, and ellipses. The values of parameters A3 through AS
and B3 through BS yield information that allows recognition of the set members regardless of orientation. Once
an object is identified, either as a simple shape or a combination of simple shapes, an exact mode) of its
norma] view is distorted to match the now known image, and informatfon regarding its locatior and orientation
can be derived from the parameters AO through A3 and BO through 83. Equatfons (2) through (7) show the
geometric significance of the parameters.

AD = X' - X : translation (2)
BO =Y - Y
Al = -(1 - gain) : qain (3)

Bl = -(1 - gain)
where gain = X'/X or Y'/Y
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A2 = {X* - X)/Y : rotation in x-y plane : (4)

B2 = (Y' - YI/X

A3 = -(1 - gain)/Y : perspective and {5)
83 = -(1 - gain)/X triangular shape information :

A4 = (X' - X)/a**2 : semicircular shape information (6)

B4 = (Y' - Y)/b**2
where a**2 = X**2 - Y**2 and b¥*2 = Y2 . X**2

AS = =(1 - gain)/Y*™2 : elliptical) shape information - (7)
BS = -(1 - gain)/X**2

Equations (8) through (10), which are based on properties of the perspective transformation [9], show the
parameters' relatfonship to the range, pitch, and yaw respectively of the target object relative to the
camera’s axis system,

range = {f*Wo*(2 - A1))/{(1 - Al)*is) . (8)

where f is the facal plane distance of the camera/lens system, Wo {s the object width, and Ws {s the camera's
image sensor width, )

tan ¢ = 2*f*A3/(1 - A1) (9) _
where ¢ is the pitch angle, and l 4

tan o = 2*f*83/(1 - Bl) (10)
where 8 i{s the yaw angle.

Using a slightly different template (fig. 3), the technique has also been used to recognize arc segments
and to decompose a geometrically complex object into fts constituent shapes. The template fs modelled as a
system of n general equations of the second degree each of which represents a point on the arc segment of
interest. The relative values of the derived parameters A, 8, C, D, £, and F indicate the conic type of which
the arc segment is a part (fig. 3) and thefr numerical values can be used to obtain the axis orientation, the
foct, the vertices, the axis intercepts, and the eccentricty of the conic.

One way of determining a demarcation between simple shapes in an object's fmage is to locate boundary
reversals (fig. 4). T7his is fndicated when there is a rotation of axis between two adjacent arc segments such
that the axes lie in diagonally opposite quadrants. The vertices of arc segments at the boundary reversals are
used as end points of lines that subdivide the object's image fnto convex shapes that can be approximated by
the primitive set.

By linearizing the problem, the computational efficiency of performing elastic matching is Increased so
that it becomes feasible as a real time procedure. . Previous methods (e.g., exhaustive enumeration and dynamic
programming) have required running times that are exponentially related to the number (n) of point pairs
involved in the match:

T{n) =« r**n (11)

where r {is the number of possfble global match configurations. For an n variable problem, the worst case
running time of the Simplex Algorithm is linearly related to n: -

T(n) = n (12)

When the flexible template is transposed to its dual [7]-[8], each pair of points to be matched requires 2
variable. Thus, the additifon of point pairs has little fmpact on the running time of the elastic matcher
[71-[8]. uWhen using the technique for object locatfon, the position update frequency is 4 Hz., which is in the
realm of human rea)l time (1.333 to 4 Hz.). It must be noted that most of the time in the position determi-
nation/manipulator activation cycle of the current testbed is consumed by the image processing activity and not
by the parameter identification and location calculations. A faster image processor would allow frequencies
approaching video frame rates (30 Hz.).

The second method determines the location and orientatfon of a plamar object from any four points on the
object that describe a reasonably convex quadrangle. Given the inter-vertex distances of the quadrangle and
the optical parameters of the camera, the rotational and translational displacements between the object and
camera can be uniquely determined. i

The distance and orientation of the quadrangle relative to the lens axis fraze can be solved in a closed
form. The object points are defined as perspective projections of the image pcints along rays originating at
the lens center, that is

Ti = Ki*[{ (13)
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where the quadrangle <10, I1, 12, 13> denotes the projection of the target <70, T1, 72, T3> on the image plane
(fig. 5). The axis system is chosen such that the x and y components of the projected image (Ix, Iy) e on
the image plane and Iz equals the focal length of the camera.  In their paper on passive ranging, Hung and Yeh
{10] prove that there exists a unique vector K which relates the target guadrangle and {ts image quadrangle and
that 1t can be described in terms of the projected image points and the inter-vertex distances. The distances

between the pairs of vertices can be described by a unique pair of nonzero real numbers, alpha and beta,
{ndependent of the coordinate system chosen, such that :

13 = 10 + alpha*{I1 - 10) + beta*(12 - 10) ' (14)
where noncollinearity implies that
alpha + beta 2 1 (15)
Equations (13) and (14) can be rewritten as _
k3*T3 = kO*TO + alpha*(k1*T1 - KO*TO) + beta*{k2*T2 - k0*TO) (16)

By substituting for the Ti and dividing by k3, equatfon (16) can be transformed to
13 = (kO/kJ)*(_l-llpha-beta)'IO + (k1/k3)*alpha*1l + (k2/k3)*beta*12 (17)

where the I vector represents the {x, y, z) coordinates of the image points. Noting that k3 is common to all
the right hand terms, it can be considered a scaling factor that reduces the target quadrangle from f{ts
original dimensions to its projected dimensions at the image plane where k3 equals 1. Thus, from similarity,
Hung and Yeh describe k3 in terms of the relationship of the magnitudes of the real and projected diagonals:

k3 = [|ro - T3||/||(k0/k3)'(x - alpha - beta)*I0 - x3|| (18)

This information is sufficient to solve for the three dimensional positions of the quadrangle vertices (T1) tn
the camera axis frame. The quadrangle orientatfon, described by the equation of the normal to the plane
occupied by the quadrangle in 3-space, is determined by substituting the coordinates of any three vertices into
the general equation of the plane. Solving the system of simultaneous equations gives the following explicit
expressions for the orientation vector in terms of the quadrangle vertices derived above:

Ax' = (Tly*T2z-T1z*T2y+T0z*T2y-TOy*T22+T0y*T12-T02*T1y)/(D(T))
Ay' = (TIZ*T2x+T1x*T22+T0x*T2z-T0R*T2x+T02*T1x-TO0x*T12)/(D(T)} (19)
Az' = (TIx*T2y-Tly*T2x+TOy*T2x-TOx*T2y+TOx*T1y-TOy*T1x}/{D(T}) '

where
D{T) = TOx*{Tly*T2z-T1z*T2y)+TOy*(T1z*T2x-T1x*T22 }+T0z*{T1x*T2y-Tly*T2x) (20)

and Ax, Ay, and Az are determined from Ax', Ay', and Az' by normalizing by the magnitude of the vector
(Ax', Ay, AZ').

Once the positions of the quadrangle vertices and the direction of its normal are known, the vectors that
comprise the NSAP matrix can be found. The approach vector A is the orientation vector derived above. The
sliding vector S is related to the slope of the base of the quadrangle with respect to the camers frame. It is
the x, y, and z components of the vector Tl - TO normalized by its length.. The position vector P is simply the
components of the selected point of approach on the quadrangle <70, T1, T2, 73>. The intersection of the
diagonals is commonly chosen.

For each probable target, it is necessary to determine and specify the alpha and beta parameters, based
upon the inter-vertex distances of the quadrangle for each target introduced. One approach to entering new
models in the data base fs to automate this task in a one shot initialization procedure by processing one frame
of the target image from a camera position normal to and at a known distance from the target. These parameters
are calculated and stored in the data base. The calculations are based on equation {13) (and its transforma-
tions) with the K vector known. The results are presented here without derivation.

alpha = V2/¥1 (21)
beta = V3/V1
where

Y1 = 10x*(I2y - Ily) + I1x*{10y - I2y) + I2x*(Ily - 10y)
V2 = -{10x*(I3y - I2y) + I2x=(I0y - I3y} + [3x*(12%y - I0y) (22)

¥3 = 10x*(I3y - Ily) + I1x*(I0y - I3y) + I3x*{Ily - 10y)
The raw state information consisting of the three translational and the three angular displacements of the
target from the camera generated by both the elastic matcher and quadrangle projection methods is converted to
the MSAP matrix. This matrix is input to the interface control section of the vision executive for further

processing.
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5. Future Work

The vision system development in the ISRL centered on the processing of single, two dimensional, intensity
based (i.e., video) images. The next research phase will involve the extension of the system to process single
three dimensional range based images as well as further refinement of the two dimensional techniques. The
successful development of a laser vision sensor based on the FM-CW radar technique will support the next

phase [11].
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Figure 4 - Shape decomposition. Figure 5. - Quadrangle projection.

29




